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4.3 Descriptions of the scientific goal of the monographic series of publica-
tions and the results achieved and possible applications of the results

4.3.1 Introduction

Complex methods in General Theory of Relativity

General Theory of Relativity (GTR) was introduced by Albert Einstein in 1915. Since that
time new methods of finding the solutions of the gravitational field equations have been sought
after. Many of these methods are based on complex analysis. The spinorial formalism [36,40],
the null tetrad formalism [6] and the twistor formalism [37] are the most transparent examples.
In [60] new solutions of the Maxwell equations have been found by complex transformations
of the coordinates. The same method allowed to find new spacetimes from already known
metrics [7,30]. E. Newman considered complex 4-dimensional spaces which metrics satisfy the
vacuum Einstein field equations and for which self-dual (SD) or anti-self-dual (ASD) part of the
Weyl tensor vanishes [31,32]. Such spaces have been called heavenly spaces (H-spaces). J.F.
Plebariski proved [41] that in heavenly spaces Einstein equations reduce to a single equation
for one holomorphic function of four variables which completely determines the metric. This
nonlinear partial differential equation of the second order was called heavenly equation.

A special attention was paid on the technique of the real slices’ of complex spaces (wide class
of the metrics was obtained as a Lorentzian slice of the double Kerr - Schild metric). Lorentzian
slices of the complex metrics seemed to be a perfect tool for finding new solutions of Einstein
equations. Many papers was devoted to this technique [43,45,54,56,62]. Especially interesting
is the paper [56] in which K. Rézga analyzed the properties of the real slices. Obviously, the
real slice technique allows to find not only Lorentzian spaces. Riemannian spaces equipped with
the metric of the signature (+ + ++) and neutral spaces (also called ultrahyperbolic) equipped
with the metric of the signature (+ + ——) can be also find by the real slice technique.

A basic corollary formulated in [56] was the necessary condition for Lorentzian slices to ex-
ist: SD and ASD parts of the Weyl tensor must be of the same Petrov - Penrose type?. Hence,
heavenly spaces are useless for investigations of the Lorentzian slice technique. Heavenly spaces
are of the types [~] ® [any] or [any] ® [~] and they admit only conformally flat Lorentzian slices.

Hyperheavenly spaces
Transparent progress was made in 1976. J.F. Plebanski and I. Robinson introduced gener-
alization of the heavenly spaces, so called hyperheavenly spaces [46,47).

Definition 4.1. Hyperheavenly space® with cosmological constant A (HH-space with A) is a
4-dimensional complez analytic manifold equipped with the holomorphic metric which satisfies
the vacuum Einstein field equations with cosmological constant and such that SD (or ASD) part
of the Weyl tensor in algebraically special.

Hyperheavenly spaces are the spaces of the types [deg] ® [any] or [any] ® [deg]. In what
follows we assume that SD part of the Weyl tensor is algebraically special. We also use abbre-
viation hyperheavenly space instead of hyperheavenly space with cosmological constant. The
transparent result was, that in the hyperheavenly spaces the vacuum Einstein equations with
cosmological constant can be reduced to a single nonlinear partial differential equation of the
second order for one holomorphic function which completely determines the metric.

! Real slice of the complex space is a 4-dimensional real submanifold of this space.

?In complex, neutral and Riemannian spaces SD and ASD parts of the Weyl tensor are independent. Therefore,
“mixed” types can occur. In complex and neutral spaces both parts of the Weyl tensor are arbitrary; there appear,
e.g, spaces of the type [II] ® [N]. In Riemannian spaces SD and ASD parts of the Weyl tensor can be of the types
[1], [D] or [—] only.

% Analogously with the terminology used in [41], HH spaces with A = 0 are also called strong hyperheavenly
spaces.
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There are two types of the hyperheavenly spaces. The first type are nonexpanding hyper-
heavenly spaces. The metric of such spaces has the form

ds® = 2 (—dp*dy,; + Q4P dg4dqy), A, B =1, (IV.1)
where (q,p) are local coordinates and QAB has the form

SFARE) 4 S\ pApB (IV.2)
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© = O(q,,Ppp) is a holomorphic function called the key function and it satisfies nonexpanding
hyperheavenly equation with A
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FA, N4 and 7 are arbitrary functions of qC. These functions are related to the coefficients of
the SD conformal curvature [5,16].
The second type of the hyperheavenly spaces are expanding hyperheavenly spaces. The

metric of such spaces takes the form
A
ds? = (¢T)-2{2T(dndw — dodt) + 2 ( — T2 Wy + ud® + E)dt2 (IV.4)
+472 (W — ¢ Wyy) dwdt + 272 (2 Wy — ¢ W,y) dw2}

Coordinates (¢, 7n,w, t) are called Plebariski - Robinson - Finley coordinates (PRF coordinates).
Function W = W (¢, n, w, t) is also called the key function. It satisfies expanding hyperheavenly
equation with A

7 (WonWess = WagWg + 267 W, Wy — 267 WyWay ) + 767 (Wan = Wig)  (IV.5)

—u(¢2W¢¢ — 36Ws + 3W) + %(Mm — fw®) — %¢'1W¢¢ = %mﬁ - %Vn +7
Functions p, 5, v and v are arbitrary functions of (w,t). Analogously like in the nonexpanding
case they are related to the coefficients of the SD conformal curvature. 7 is an arbitrary nonzero
constant.

All analytic and algebraically special solutions of the vacuum Einstein equations are con-
tained in the Lorentzian slices of the hyperheavenly spaces. The reduction of the vacuum
Einstein equations to one hyperheavenly equation gave hope for progress of the very ambitious
scientific programme called Penrose - Plebariski programme. The main goal of this programme
is finding the general techniques for obtaining Lorentzian slices of the complex spaces. Unfor-
tunately, such techniques are still unknown. Even the examples of the Lorentzian slices of the
complex metrics which give the famous metrics known in GTR are rare [4,21]. A few examples
have been found in [H3], [H4] and [HS].

Particularly, J.F. Plebanski, J.D. Finley, M. Przanowski and others wanted to use the hy-
perheavenly spaces theory to find new vacuum type [N] solutions with twist®. Type [N] is
the most algebraically degenerated of all nonconformally flat Lorentzian spaces. It is impor-
tant in the theory of the gravitational waves. According to Sachs peeling theorem far away
from a bounded source of gravitational radiation, the gravitational field is approximately of the
Petrov-Penrose type [N]. All type [N] vacuum and nontwisting solutions are explicitly known

“Twist is one of the parameters which describe the optical properties of the congruences of null geodesics.
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(the pp-waves class, the Kundt class) or they have been reduced to a single PDE of the second
order (the Robinson - Trautman class). Only one vacuum and twisting type [N] solution is
explicitly known. It is the Hauser solution [23,24]. Unfortunately, all explicitly known type
[N] vacuum solutions have the singularities. Therefore, they cannot describe the gravitational
waves. Despite of many approaches to the vacuum type [N] problem (e.g., [13,14,19], [P1] and
[P9]), the Hauser solution is still the only known twisting solution.

The hyperheavenly equations (IV.3) and (IV.5) are strongly nonlinear. It is desired to in-
vestigate the ways of simplification of these equations. Obviously, the hyperheavenly spaces can
be equipped with the symmetries defined by the Killing or homothetic vectors®. There are only
two papers [42,57] devoted to the symmetries in the hyperheavenly spaces. Symmetries in the
heavenly spaces were considered in [15,17].

Congruences of null strings
The hyperheavenly spaces are equipped with the interesting geometrical structure: a congru-
ence of null strings [44]. The congruence of null strings (also called the foliation of null strings)
is a family of complex 2-dimensional surfaces which are totally null and totally geodesic.
Consider 2-dimensional distribution D defined in an open subset U € M by the Pfaff system

. . 64 62 )
mag?? =0, (¢*7):=V2 , A,B=1,2 (IV.6)
el —ed
where my is a nowhere vanishing 1-index undotted spinor field and (e!,e?, €3, e*) is the null
tetrad, i.e., the basis of 1-forms such that the metric takes the form ds? = 2ele? + 2ePet.
Therefore, the distribution D is spanned by the vectors {maag, mabg}, azb® # 0. If one

defines the 2-form ¥ according to the equation ¥ := (m AgAi) A (mpgP?), then it takes the form
S = mampSAP (IV.7)
where S4B is the basis of the SD 2-forms

2e* A e? el Ne2+ednet
(§4B) .= (IV.8)
el Ne? +e3 net 2e3 A el

Because 2-form X is SD we say that the distribution D is SD. The distribution D is completely
integrable in the Frobenius sense if the spinor my4 satisfies the set of the equations

mAmBVAMmB =0 (Iv.9)
Egs. (IV.9) are called SD null string equations. One also says that spinor m, generates the
congruence of SD null strings if it satisfies Egs. (IV.9). Null strings are the integral manifolds
of the distribution D. The family of such integral manifolds constitutes the congruence of
null strings. Every surface of this family is totally null and totally geodesic. [Analogously the
congruences of ASD null strings are defined].
The properties of the congruences of null strings were investigated in [48,50,55]. Particularly,
from the Egs. (IV.9) it follows that

vAMmB = ZAMmB+ € AB MM (IV.10)

where Z,,, is the Sommers vector and M, is the expansion of the congruence of SD null
strings. The expansion is the most important characteristic of the congruences of null strings.

5We use the following terminology: a vector K, which satisfies the set of the equations V(. Ky = X gas is called
the Killing vector, if x = 0; the homothetic vector if x = const; the proper homothetic vector if x = const # 0;
the proper conformal vector if x 3 const.
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If My, = 0 the congruence is called nonexpanding. If M w7 0 one deals with the expanding
congruence. If the congruence is nonexpanding then the distribution D is parallely propagated.
It means that Vy X € D for every vector X € D and for every vector Y.

The existence of the congruences of SD (ASD) null strings was related to the algebraic
degeneration of the SD (ASD) part of the Weyl tensor. The complex Goldberg - Sachs theorem
says [44,52].

Theorem 4.2 (Plebariski, Hacyan, [44]). In a complez Einstein space the following statements
are equivalent

e space admits a congruence of SD null strings generated by the spinor m4
o SD Weyl spinor is algebraically degenerated and spinor m# is a multiple Penrose spinor

Expanding (nonexpanding) hyperheavenly spaces are equipped with expanding (nonexpand-
ing) congruences of null strings. According to the complex Goldberg - Sachs theorem the number
of different congruences of null strings is equal to the number of the multiple Penrose spinors.
Hyperheavenly spaces of the types [ILIII,N] ® [any] are equipped with only one congruence of
SD null strings, while the type [D]®[any] is equipped with two congruences of null strings. How-
ever, the type [D]® [any] does not admit the existence of the two congruences of SD null strings
such that one of them is expanding and the second one is nonexpanding [P4]. Consequently,
the possible Petrov - Penrose types of the hyperheavenly spaces are:

e [II]" ® [any], [D]*" ® [any] - nonexpanding hyperheavenly spaces with A 5 0
e [IIIN]" ® [any] - nonexpanding hyperheavenly spaces with A = 0
e [ILIIL,N]® ® [any], [D]*® ® [any] - expanding hyperheavenly spaces

Upper index e means, that the congruence of SD null strings is expanding, while upper index
n means, that the congruence of SD null strings is nonexpanding. If there are two different
congruences then we use two indices, nn or ee.

There are infinitely many different congruences of SD null strings in the heavenly spaces of
the types [~] ® [any]. However, if A = 0 there exist both expanding and nonexpanding congru-
ences. If A # 0, there exist only expanding congruences. Usually in such cases the upper index
is omitted, unless one of the congruences is somehow distinguished and it is desired to point
out its properties (see, e.g., [H4]).

Neutral spaces

It should be mentioned that real and totally null surfaces have been known in mathematics
in Walker spaces since the fifties [27.28,61]. The hyperheavenly spaces formalism allowed for a
transparent progress in this field of science [P2]. It is quite a difficult task to find the Lorentzian
slice of the complex space, but it is quite easy to find the real neutral slice of the complex space.
It is enough to find the null tetrad which all members can be considered as real ones. In many
cases it is sufficient to replace all the complex coordinates by real ones and all the holomorphic
functions by real analytic ones. Therefore, the hyperheavenly spaces are very useful tool in
finding real neutral Einstein spaces.

Last times real neutral spaces appeared in many issues of the theoretical physics. In [22]
”sharp” versions of the Goldberg - Sachs theorem were considered. Real neutral spaces equipped
with two different congruences of null strings appeared in the papers devoted to the two solids
which roll on each other without slipping and twisting [33,34]. Particularly, neutral ASD spaces
should be mentioned. Such spaces appear in the Osserman geometry [1,2,20]. Real neutral
spaces equipped with the Killing vectors were also considered [26], [P5], [P7]. The necessary
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and sufficient conditions for the 4-dimensional ASD spaces to be locally conformally equivalent
to the Einstein spaces were analyzed in [11]. Summing up, real 4-dimensional neutral spaces
have attracted a great deal of interest.

Sketch of the self-presentation

The monographic series of publications [H1] - [H8] is devoted to the use of the symmetries
and congruences of null strings in studies of complex and real spaces. The most important results
of this series of publication I am going to present in further parts of the self-presentation.

The papers [P1] - [P3] which were published before I received the Ph.D. degree proved that
the hyperheavenly formalism is very useful. The example of the space of the type [N] ® [N]
equipped with the twisting congruence of null geodesics was found in [P1]. This example did
not posses the Lorentzian slice, but it gave a new hope in progress of the further studies on
such spaces. We decided that the analysis of the space of the type [N] ® [N] with the symmetry
defined by the homothetic vector should be the next step of our investigations. In [P2] the
hyperheavenly spaces formalism allowed to obtain the explicit metrics of the 4-dimensional
Walker and two-sided Walker spaces. Explicit examples of the metrics of the Osserman spaces
which are not the Walker spaces were the main result of [P3]. The cosmological constant played
a fundamental role in obtaining the examples of such spaces.

The results of [P1] - [P3] suggested that the thorough analysis of the symmetries of the hy-
perheavenly spaces with nonzero cosmological constant is strongly desired. In 2009 I formulated
the plan of my scientific work. The main goal of this plan was the generalization of the results
of [17,42,57] for the case of nonzero cosmological constant and for the case of proper conformal
vectors. This plan was fulfilled in 2010-2013. The results were published in [H1] - [H3]. From
these investigations it followed that there is a relation between null homothetic vectors and
congruences of null strings®. The analysis of all the complex and real Einstein spaces equipped
with the null homothetic vector was published in [H4].

The results of [P5] and [P6] (which are not a part of the monographic series of publications)
convinced me that the existence of the congruences of null strings plays a very important role
in the complex and real spaces. In 2015 I defined the second part of my plan of the scientific
work. The main goal of this plan was to analyze how the existence of the congruences of null
strings affects on the properties of the space. Firstly. I used the congruence of null strings as a
tool in finding the explicit examples of the para-Hermite and para-Kéhler Einstein spaces. The
results were published in [H6]. Then I considered the existence of the congruences of null strings
in algebraically degenerated spaces which are not the Einstein spaces (such spaces are called
weak hyperheavenly spaces). I noticed, that the existence of such geometrical structures has a
transparent affect on the algebraical properties of the traceless Ricci tensor. The classification
of the traceless Ricci tensor in 4-dimensional neutral spaces was presented in [H5]. In [H7]
the properties of the traceless Ricci tensor of the spaces equipped with the congruences of null
strings were published. In the last paper [H8] I dealt with the vacuum type [N] ® [N] spaces.
Also, some new examples of the Lorentzian slices of the complex metrics were found in [HS].

4.3.2 Symmetries in the hyperheavenly spaces

The papers [H1] - [H2] are devoted to the symmetries in nonexpanding hyperheavenly spaces.
The main goal of these papers was to fill the gaps left by J.F. Plebariski and J.D. Finley in [42],
i.e., the generalization of the analysis to the case of proper conformal symmetries and nonzero
cosmological constant. '

Nonexpanding hyperheavenly spaces with A # 0 are of the types [II]"® [any] or [D]""® [any].
If cosmological constant vanishes then nonexpanding hyperheavenly spaces are of the types
[II1,N]"®[any]. The generalization of the analysis to the case with nonzero cosmological constant

5Tt appeared later, that such relation has been already known, compare [12].
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is especially important, because symmetries in the nonexpanding hyperheavenly spaces of the
types [II]" ® [any] and [D]™ ® |any] were not considered by J.F. Plebatiski and co-workers.

The first step was to demonstrate that the Killing equations V(aKs) = Xgap can be reduced
to a single equation. I called this equation the master equation (analogously, like the authors
of the paper [42] did). In [H1] I considered different algebraic types separately’. I divided
the analysis into three subsections (4.1, 4.2 1 4.3) in which I dealt with the types [-] ® [any],
[IILN]" ® [any] and [IL,D]" ® [any]. The most important results are listed below.

o The results obtained for the heavenly spaces of the types [—] ® [any] are especially in-
teresting. Analysis was generalized to the case of the proper conformal symmetries. I
found the same embarrassing detail mentioned by J.F. Plebaniski and J.D. Finley in the
paper [42]: there appeared the first integral of the heavenly equation Y in the master
equation. It should me mentioned, that in the case of the homothetic symmetries the
function T can be gauged away by a clever trick introduced in the paper [17]. However,
for the proper conformal symmetries this trick does not work. I realized, that the proper
conformal symmetries in the heavenly spaces require a separate paper®.

e Analysis of the types [I[]" ® [any] and [D]"" ® [any] is original (for such types cosmological
constant A # 0). The reduction of the Killing equations to a single equation was presented
in details (section 6).

e The example considered in section 5 is devoted to the less algebraically degenerated hyper-
heavenly space which admits proper conformal vector. It is space of the type [N]" ® [N]”.
The existence of a proper conformal vector implies the existence of a null Killing vector (it
is covariant derivative of the conformal factor V,x). I solved the master equations for the
proper conformal vector and for the null Killing vector and the hyperheavenly equation.
The final result is the metric (5.27)°. It should be mentioned that in this example the
explicit form of the key function was found. The function which generates the metric is
given by Eq. (5.26).

[ realized that my approach to the reduction of the Killing equations is quite unnatural (the
considerations were divided into different algebraic types which were considered separately). I
returned to this problem in [H2]. I proved that any Killing vector or homothetic vector or proper
conformal vector in the nonexpanding hyperheavenly spaces of the types ILIILN]™ ® [any] or
[D]" @ [any] has the form

7/

, 9 , 96V ;\ @
K=6B—.+(2xpB+— ~ +GB)— V.11
and the Killing equations can be reduced to the single master equation
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where £ is the Lie derivative along a vector field K and functions §4, €4, (A and ¢ are
arbitrary functions of the coordinates ¢™. The integrability conditions of the Killing equations
are given by the formulas (2.19), (2.20) and (2.21) in [H2].

The detailed classification of Killing vectors in the nonexpanding hyperheavenly spaces is the
main result of [H2]. I analyzed the form of the Killing vectors and I solved the master equation
in all the cases. I found the forms of the spinors'® l45 and I, and I presented the form of

"There are several misprints in [H1]; these misprint have been corrected in the erratum in [H3].
8Together with M. Dobrski we devoted to this subject the paper [P6] which was published in 2014.
9This metric is a special case of the complex pp-wave metric which was considered in [H2].

10T hese spinors are proportional to the SD and ASD parts of the 2-form V|, K.
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the reduced nonexpanding hyperheavenly equation (these results are contained in section 3). I
proved that the nonexpanding hyperheavenly spaces admit three types of the Killing vectors
(0,1, 9 19 i 9, i) and two types of the homothetic vectors (8 + 2x0p™0 4> 2X0p‘45' i)

The class1ﬁcat10n of the proper homothetic symmetrles in the heavenly spaces were con-
sidered in subsection 3.6. Standard approach to this issue distinguishes three types of such

symmetries. These types depend on the properties of the spinor (4p5:
e [4Blap # 0 (compare [3,10])
e 4Bl 45 =0 (compare [9))
e lap =0 (compare [12]) - in this case the proper homothetic vector is null

My approach distinguishes four types of such symmetries. The case [48 45 = 0 corresponds to
the type which I called HHKI. The case [4p = 0 corresponds to the type HHKIIIb. However,
the case [4Bl p # 0 splits into two different subtypes, HHKII and HHKIIIa.

I found a few examples of the nonexpanding hyperheavenly spaces admitting the symmetries
in [H2]. The most interesting ones are:

e The metric (4.4) which is the general metric which admits the null Killing vector Kk =
¢'9,;. The metric (4.4) is of the types [I[ILN, =] @ [N, —]°.

e The metric (4.6) which is the general metric which admits the null Killing vector K = 8 i -
The metric (4.6) is of the type [N, —]" ® [N, —]" and in the next papers it was called
the complex pp-wave metric. This metric admits real Lorentzian slice which is vacuum
type [N] pp-wave metric. In the hyperheavenly spaces formalism the key function which
determines pp-waves metric is given by the formula (4.10). It is the first example of the
Lorentzian slice of the complex metric I have found.

e The metric (4.15) which is the example of the space of the type [N]” ® [N]" with the
nonnull Killing vector of the type K = 6‘qi.

e The metric (4.18) which is the example of the space with A # 0 of the quite rare type
[I1]™ ® [N]°.

The paper [H3] is devoted to the symmetries in the expanding hyperheavenly spaces. The
main goal of this paper was to generalize the results obtained by A. Sonnleitner and J.D. Finley
in [57] for the case with nonzero cosmological constant. Note, that the expanding hyperheavenly
spaces do not admit proper conformal vectors. I proved, that any Killing or homothetic vector
in the spaces of the types [ILIII,N]® ® [any] or [D]*® ® [any] takes the form

Kzai—i—bg—i-(b 2X0)¢

0
Ow ot ((2bt — Gy — 2X0)N + b — 7'6) % (IV.13)

99

and the Killing equations reduce to the master equation

by A
£xW = ~(ix0 + 200 = 0)W + g0 (6’ = 7) + oo’ (IV.14)
1 1
tor ( = buw®” = bun’ + (Guww — 2btw)n¢) +5(ewd +em) +

where b, €, a and [ are arbitrary functions of the coordinates (w,t) and a = a(w). The
integrability conditions of the Killing equations are given by the formulas (3.26a) and (3.35a) -
(3.35¢).

The classification of the symmetries is presented in section 4. I analyzed the forms of
the Killing and homothetic vectors and the reductions of the hyperheavenly equation for all
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symmetries and all algebraic types. The expanding hyperheavenly spaces admit three types of
the Killing vectors (9y, 0, 9y) and three types of the homothetic vectors (8,, — 2x0(90g +ndy),
9 = 2x0(¢0g + n0y), —2x0($9s + ndy)).

The most interesting examples obtained in section 5 are:

e Spaces of the type [D]*® ® [any] with the symmetries (subsection 5.1)

e The metric (5.23) which is the general metric for the types [III]*®III]¢ and [N, —]*®N, —°
with A # 0 admitting the null Killing vector 8,. The examples of pointwise Osserman
and globally Osserman spaces which are not Walker spaces can be easily obtained from
the metric (5.23).

In all examples of the metrics admitting the null homothetic vector which were presented in
[H2] and [H3] the null homothetic vector is tangent to the null string. Natural question arises:
does the existence of the null vector imply the existence of the congruence of null strings? I
decided to analyze the hyperheavenly and heavenly spaces with the null homothetic vector in
details. I devoted to this issue the paper [H4].

It appeared that if one assumes the existence of the null homothetic vector (which can be
always written in the form K, 5 = mamp) then from the integrability conditions of the Killing
equations it follows that spinors m4 and m ; generate the congruences of SD and ASD null
strings. Hence, any null homothetic vector is tangent to the SD and ASD null string. It appeared
later that this result has been already known, at least in the ASD spaces (compare [12]). The
general analysis presented in [H4] leads to the formulas (2.31a)-(2.31f). The formula for the
covariant derivative of the null homothetic vector is especially interesting

VEKP = meMy €B0 1mPME ¢ 0 (IV.15)

spinors M4 and Mp are expansions of the congruences of ASD and SD null strings, respectively.
The covariant derivative of such a vector is determined by four spinor fields m 4, m B> Ma and
M.

Then I found that null and proper homothetic vector is admitted only by the spaces of the
types [N, —]¢ ® [III, —]™. Using the hyperheavenly spaces formalism I found the general metric
of the space of the type [III]” ® [N]¢ with the null and proper homothetic vector. It is the metric
(4.6). There appear a function of three variables in this metric. This function satisfies the
equation (4.5). Unfortunately, I was unable to solve the equation (4.5). Note, that the space of
the type [III]" ® [N]® equipped with the null and proper homothetic symmetry appeared earlier
in [H2] and [H3] but it was not analyzed there.

The only non conformally flat heavenly spaces which admit null and proper homothetic
vector are spaces of the types [N]*® [~]" (the metric (4.9)) and [III]* ® [~]° (the metric (4.14)).
These metrics are original results. To the best my knowledge the metrics of the heavenly spaces
with null and proper homothetic symmetry have not been found earlier explicitly. Moreover,
the metric (4.14) belongs to the class of two-sided Walker spaces.

There are a lot of metrics which admit null Killing vector. These are the metrics of the
spaces of the types

(B [N, -"®[N,-]", A=0

(@) [ILN, =" ® [N, —]¢, A=0
(éd7) [III)° ® [III)°, [N,-]*® [N, —]¢, A#0
(iv) [ ® [I1}°, [D]** @ [D], A is arbitrary

Some of the metrics which admit null Killing vector appeared in previous publications, e.g.,
(¢) and (i) appeared in [H2] and (774) in [H3]. Note, that (i) admits the Lorentzian slice which
is the pp-wave metric. Detailed analysis proved that the spaces (ii) and (ii7) do not admit

9
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Lorentzian slices. The reason why (4i) does not admit such a slice lies in the different properties
of the congruences of SD and ASD null strings (SD congruence is nonexpanding and ASD one
is expanding). However, the case (i4¢) is much more subtle. Two necessary conditions for the
Lorentzian slices to exist are satisfied by (4i¢) (both SD and ASD parts of the Weyl tensor are
of the same Petrov - Penrose type and both congruences of null strings are expanding, i.e., they
have the same properties). We know, however, that Lorentzian slices of such spaces do not
exist. If they existed, they would have to be Einstein spaces of types [III] or [N] with A # 0,
equipped with the null Killing vector. Such metrics do not exist in GTR.

The metric of the case (iv) (which corresponds to the type [II}° ® [II]¢ with A # 0) was
reduced to the form (5.5). It depends on one function W (¢, w,t) which satisfies the equation
(5.6). The general solution of the equation (5.6) is unknown. Moreover, I was not able to find
the transformation of the variables which brings the metric (5.5) to the form more plausible to
obtain the Lorentzian slice (such a slice exists, compare [58]). I proved that the only possible
algebraic reduction of the metric (5.5) gives the type [D]®® ® [D]®® which corresponds to the
trivial solution of the equation (5.6), namely W = 0. It is given by the metric (5.18).

However, I succeeded in finding the Lorentzian slice of the metric of the type [II]* ® [II)¢
with A = 0. I found the transformation of the variables which brought the metric to the form

ds® = =2z du(dv + Mdu) + 272 (dz® £ dy?) (IV.16)
where function M = M (z,y, u) satisfies Euler - Poisson - Darboux equation
TMypg + 2 My, + M, =0 (IV.17)

If the coordinates in (IV.16) and (IV.17) are considered as real ones and the function M as real
analytic one, then upper signs correspond to the Lorentzian slice (i.e., the type [II] with A = 0
and with the null Killing vector). Lower signs correspond to the real neutral slice!l. It is the
second example of Lorentzian slice of a complex metric I was able to find.

4.3.3 Para-Hermite and para-Ké&hler Einstein spaces

In [P4] together with M. Przanowski and S. Formariski, we analyzed complex para-Hermite
FEinstein spaces.

Definition 4.3. Complex 4-dimensional para-Hermite space is a complex space equipped with
nondegenerate holomorphic metric such that for every point p there exist an open neighborhood
U C M and complex coordinates {24, 2P} such that

ds® = 2f , 5d="dzP, det(f, ) # 0 (IV.18)

where f, 5 are holomorphic functions'?.

Para-Hermite spaces are equipped with two different congruences of SD (or ASD) null
strings. In general, both these congruences are expanding. If both congruences are nonex-
panding then there exist a function f such that f,; = 62f/024025. Such spaces are called
para-Kahler. From the complex Goldberg - Sachs theorem it follows that para-Hermite Einstein
spaces are the spaces of the type [D]*° ® [any| and para-Kéhler Einstein spaces are spaces of the
type [D]"" ® [any]. Einstein field equations in the spaces of the type [D]®®® [any] can be reduced

" Transformation (5.13) which was found in [H4] leads only to the Lorentzian slice. However, simple modifica-
tion of the transformation (5.13) leads to the real neutral slice. Namely, it is enough to change the coordinate ¢

1
according to £ = (—:—0> ‘(z+y)
12Note, that if the coordinates z4 and zp are real, the corresponding real space is neutral; if z 4 = ZzA then the

corresponding real space has the metric of the signature (+ + ++).

10 /.Hm m u%& 6{/{4 .



to a single equation and it is one of the most important results of [P4]. It is the equation (5.13)
in [P4].

In [33,34] neutral Einstein spaces with A # 0 play an important role. I decided to use the
results of [P4] together with the hyperheavenly spaces formalism to find the explicit metrics of
the complex and real neutral para-Hermite and para-Kéhler spaces. The paper [H6] is devoted
to this issue. I have chosen the null tetrad in such a manner that the first congruence of SD null
strings was spanned by the vectors (91, 03) and the second congruence is spanned by the vectors
(02,04). However, it was clear for me that the existence of two different congruences of SD
null strings is the condition not strong enough to obtain general solutions. I assumed then the
existence of the additional congruence of ASD null strings (what is equivalent to the algebraic
degeneration of the ASD Weyl spinor). There are two different ways of further investigations:

1. To use the hyperheavenly equation or the equation (5.13) in [P4]. However, it is impossible
then to choose the null tetrad in such a manner that the congruence of ASD null strings
is spanned by the vectors (01, 04), at least in general.

2. To choose the null tetrad in such a manner that the congruence of ASD null strings is
spanned by the vectors (01,0;). In this case it is necessary to solve vacuum Einstein
equations with A from the beginning, because both the hyperheavenly equation and the
equation (5.13) in [P4] are not valid anymore, at least in general.

I decided to simplify the problem and I followed these two ways simultaneously, i.e., I tried to
solve the hyperheavenly equation or the equation (5.13) in [P4], but at the same time I assumed
that the congruence of ASD null strings is spanned by the vectors (01,04). This simplification
allowed to obtain many examples of the explicit metrics of the para-Kahler Einstein spaces (such
spaces exist only if A # 0) and para-Hermite Einstein spaces (for such spaces A is arbitrary but
I focused on the case with A # 0). The solutions which were found are gathered in the Tables
1 and 2. Remarks:

e The type [D]"" ® [II]* T was able to solve later in all generality. This result was published
in [P8] which is not the part of the monographic series of publications.

o The metric (5.13) which describes the type [D]"" ® [D]™ is the general solution of the
para-Kéhler homogeneous Einstein space, compare [35]. It is at the same time the general
solution of the type [D]" ® [D]™* what I proved later and the proof of this fact is not
published in [H6].

e The types [D]* ® [III]"* and [D]®® ® [N]" exist only if A = 0.

e All the metrics of the type [D]**® [D]™" found in [H6] do not admit any Lorentzian slices.
To the best my knowledge these metrics are the first examples of the complex metrics for
which SD and ASD Weyl spinors are of the type [D] and which do not admit Lorentzian
slices.

4.3.4 Congruences of null strings in the weak hyperheavenly spaces

The results of [H6] showed that congruences of null strings in the hyperheavenly spaces
are important geometrical structures. Other results [50, 55] proved that such structures play a
distinguished role not only in Einstein spaces. The case of the para-Kihler space which is not
the Einstein space was analyzed in [50]. An intriguing (though not widely known) result was
presented in [55]. In this paper the general metric of the space which admits three different
congruences of SD the null strings was found. Such a space cannot be Einstein since Einstein
spaces admit at most two different congruences of SD null strings. I was curious if the existence
of the congruences of null strings affects on the traceless Ricci tensor?
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Type Examples

[D]™ & [I] no examples

D™ @ [II]° no examples
[D]"™" ® [1I)" (5.11)
[D]"" ® [D]*¢ | after changing the orientation (3.43) for Sy = 0 and (3.47) for Sy =0
[D]"" ® [D]™" (5.13)
[D]"" & [I11]© (5.16)
D™ & [III]™ does not exist
[D]"" ® [N]° (5.16) z f = foz
D™ ® [N]™ does not exist

Table 1: Para-Kéhler Einstein metrics found in [H6].

It was clear that a classification of the traceless Ricci tensor in 4-dimensional neutral spaces
should be the first step. Such classification in Lorentzian case was presented in distinguished
paper [39] (for a little different approach see [25,38]). The paper [51] was devoted to such
classification in complex spaces. I devoted the paper [H5] to the classification of the traceless
Ricci tensor in the neutral spaces.

I focused on the algebraic properties of the matrix (C%) of the traceless Ricci tensor and I
used the following criteria:

the number and the types of the eigenvectors (space-like, time-like, null)!3

e the number and the type of the eigenvalues of the characteristic polynomial (complex or
real, single, double, triple or quadruple)

e the form of the minimal polynomial

Petrov - Penrose type of the Plebariski spinors'4

I distinguished 9 main types and 33 subtypes of the traceless Ricci tensor in the neutral spaces.
So great number of the subtypes convinced me that it is worth to skip the elegant convention
of the symbols of the types used by J.F. Plebanski and M. Przanowski w [39,51]. I used a little
more complicated symbol of the type. Its advantage is that all the properties of the matrix
(C%) can be immediately guessed. I proposed the symbol

[Aj]®[Bk][n1E;11 —noEy® — "']E}qlqz...)

where

e [A;] and [By] are Petrov - Penrose types of the undotted and dotted Plebanski spinors,
respectively (Plebanski spinors are symmetric in all indices. They can be classified like SD
and ASD Weyl spinors. Note, that there are 10 such types in the neutral spaces, compare,

e.g., [22])

131 defined space-like and time-like vector in the neutral spaces analogously as they are defined in the Lorentzian
spaces: if VV, > 0 the vector is space-like, if V*V, < 0 the vector is time-like.

' Plebariski spinors are defined as follows: Vapcp = 4C(4p MYCyovmr Vagep =4 CMN(ABCMNCD) where
C spep is the spinorial image of the traceless Ricci tensor.
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Type Examples

[D]e¢ @ [1] no examples
Dl @ [I* | (3.31) for f #0, (3.35) for f, # 0
[D]*¢  [II]™ (3.31) for f =0
[D]*¢ ® [D]¢¢ | (3.43) for Sy # 0 and (3.47) for Sy # 0
[D]*¢ @ [D]™" | (3.43) for Sp = 0 and (3.47) for Sy = 0
[D]*¢ @ [II]® (3.57)
[D]*¢ ® [IIT]™ (3.61)
[D]e ® [N]© no examples
[D]*¢ @ [N]" no examples

Table 2: Para-Hermite Einstein metrics found in [H6).

e v is the number of the eigenvectors
e (q1g2...) describes the form of the minimal polynomial

o E are different eigenvalues, E; = {Z,R} (Z - complex, R - real), the upper index
a; = {n,s,t,ns,nt,nst} denotes the type of the corresponding eigenvector (n - null, s -
space-like, ¢ - time-like, ns - null or space-like, nt - null or time-like, nst - arbitrary)

e n; are multiplicities of the eigenvalues

In [H5] I analyzed the criteria which distinguish the corresponding types, then I presented
graphically the degeneration diagrams for parent types. finally I found the canonical forms of
the (C%) for each type. After the classification was prepared, I returned to the question how
to relate the properties of the congruences of null strings to the properties of the traceless Ricci
tensor.

In [H7] I considered the spaces equipped with one, two, three and four different congruences
of SD null strings. Two corollaries can be easily formulated from the integrability conditions of
the null string equations:

1. if a spinor my generates a congruence of SD null strings, then it is a Penrose spinor
(Theorem 3.3 in [H7])

2. if a spinor my generates a nonexpanding congruence of SD null strings, then it is a multiple
Penrose spinor (Theorem 3.4 in [H7])

The spaces equipped with at least one nonexpanding congruence of SD null strings belong
to the important class of weak hyperheavenly spaces (see, e.g., [P2]).

Definition 4.4. Weak hyperheavenly space is a four-dimensional holomorphic space endowed
with a holomorphic metric, which satisfies the following conditions:

(i) the SD Weyl spinor is algebraically special and spinor m4 is a multiple
Penrose spinor

(it) space admits a congruence of SD null strings generated by the spinor ma

Of course, in Einstein spaces (i) <= (i7) (it follows from the complex Goldberg - Sachs
theorem). The most interesting results of [H7] are:
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e The existence of the congruences of SD null strings of different properties was related to
the possible algebraic types of SD Weyl spinor (Tables I, IV, V and VII). Some of these
results have been already known and some of them (section V) are original.

e It was proved that if the space admits two congruences of SD null strings then their
expansions, Sommers vectors and the covariant derivatives of these objects determine the
traceless Ricci tensor (formulas (4.7a)-(4.7c)).

o It was determined what types of the traceless Ricci tensor are admitted by the space
equipped with one nonexpanding congruence of SD null strings (Table II). It is worth to
point out the subtle difference between the types [4N]¢ and P)[4N]} described earlier
in [50]. In the case of the type (2)[4N14 both null eigenvectors of the traceless Ricci tensor
are tangent to the null string. In the case of the type (@) [4N]% only one eigenvector is
tangent to the null string.

e It was determined what types of the traceless Ricci tensor are admitted by the space
equipped with two nonexpanding congruences of SD null strings (Table VI).

e The metric obtained by I. Robinson and K. Rézga in [55] is the general metric of the
space equipped with three different expanding congruences of SD null strings. This metric
was specified for the case of two congruences being expanding and one congruence being
nonexpanding (Theorem 5.3).

There is one more interesting result in [H7] which is related to the congruences of SD null
strings but does not concern the weak hyperheavenly spaces anymore. In subsection V.C the
space equipped with four different congruences of SD null strings was considered. It is possible
only for the complex spaces of the type [I] ® [any] and real neutral spaces of the type [I,] ® [any].
Moreover, all congruences are necessarily expanding. The issue was reduced to the system of
three equations for four functions (Theorem 5.4). I was not able, however, to solve this system!®.

4.3.5 Spaces of the type [N] ® [N]

Vacuum and twisting, type [N] Einstein equations are one of the unsolved problems of
GR. We dealt with this problem together with M. Przanowski in [P1] and [P9]. We used the
formalism of the hyperheavenly spaces of the type [N]¢ ® [N]¢. We were not able, however, to
obtain the explicit solutions. The first problem is that field equations for the space of the type
[N]¢ ® [N]¢ with twist are very complicated. The second problem is that we still do not known
the general techniques of obtaining the Lorentzian slices of the complex spaces. Even if we
succeed in finding a solution of the field equation or in reducing the problem into differential
equation of the second order, there is still the question about the Lorentzian slice. The facts
that both SD and ASD Weyl spinors are of the same algebraic type and the congruences of SD
and ASD null strings have the same properties do not imply that the Lorentzian slice exists. I
have already presented an example of the spaces with such properties which do not admit any
Lorentzian slice (see page 10).

Therefore, it is desired to investigate the complex spaces which SD and ASD Weyl spinors
are of the type [N] in details and reconstruct from these spaces all known Lorentzian type
[N] solutions. Such an approach allows, perhaps, to formulate some general conclusions of
the Lorentzian slices. Moreover, in [P9] extremely interesting metric of the type [N]¢ ® [N]”
equipped with the twisting null geodesics congruence and two homothetic vectors was found.
The natural generalization of considerations of the paper [P9] is to analyze the same type

15T think that the problem of the spaces equipped with four different congruences of SD null strings can be
explicitly solved, but it involves a different approach. It is one of the most important problems I am going to
return to.
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without any symmetries and to investigate the field equations for this type. This question is
studied in [HS].

In the first step in [H8] we assume the existence of the congruences of SD and ASD null
strings. Then their properties were related to the properties of their mutual intersections. The
intersections of the congruences of SD and ASD null strings constitute the congruence of null
geodesics. I defined complex expansion 6, complex twist o and complex shear s analogously as
it is done in the Lorentzian spaces (formulas (3.6)). Then I considered the congruence of null
geodesics in the affine parametrization and I found the relations between , 0 and the expansions
of the congruences of null strings

0 ~ maMA +m MA (IV.19)

QNmAMA—mAMA

where m4 is a spinor which generates the congruence of SD null strings with the expansion
given by M and m is a spinor which generates the congruence of ASD null strings with the
expansion given by M4.

Any space of the type [N]®[N] can be classified according to the properties of the congruences
of null strings. The properties of the congruence of null geodesics can be used as a subcriterion.
There are exactly 6 different types of the Einstein type [N] ® [N] spaces with A = 0 (see
Table 3). The symbol [++] means that the congruence of null geodesics is expanding and
twisting, [+—] means that the congruence is expanding and nontwisting, [—+] means that the
congruence is nonexpanding but twisting and finally, the symbol [~ —] means that the congruence
is nonexpanding and nontwisting. In the case of the spaces which are not Einstein spaces there
exists one more type {[N]®® [N]¢, [-+]}. The existence of such a type in Einstein spaces with
A = 0 is not possible (it follows from the Raychaudhuri equation).

Type In [H8] considered in:
{IN]* ® [N]*, [-—=]} section 4
{(N]*® [N]™, [-—]} section 6
{IN]® & [N]™, [++]} section 8
{IN]* ® [N]¢, [-=]} section 5
{{N]* ® [N]*, [+-]} section 7
{[N]¢ ® [N]¢, [++]} not considered

Table 3: Possible type [N] @ [N] spaces.

I found the key function for all the types and I inserted the key function into the hyperheav-
enly equation. For all the cases the hyperheavenly equation was completely solved or reduced
to the PDE of the second order. I have investigated also the symmetries generated by one or
two homothetic vectors in all the types. The most interesting results are listed below.

e The Lorentzian slice of the type {[N]® ® [N]¢ [-—]} was found. It appeared that this
Lorentzian slice is vacuum type [N] Kundt class (subsection 5.1). It is the third example
of the Lorentzian slice I have found.

e It was proved that the complex pp-wave is the type {[N]" & [N]", [~ —]} and the complex
Kundt class is the type {[N]® ® [N]¢,[~—]}. In Lorentzian case both these metrics are
equipped with the nonexpanding and nontwisting congruence of null geodesics. However,
pp-wave metric admits the null Killing vector which is not admitted by the Kundt class.
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There is a transparent difference between the complexification of these spaces: complex
pp-waves are equipped with two congruences of null strings which are both nonexpanding
while the complex Kundt class is equipped with two expanding congruences. In both cases
these congruences intersect one another along nontwisting and nonexpanding congruence
of null geodesics.

e The Lorentzian slice of the type {[N]¢ ® [N]¢, [+—]} was found. It appeared that this
Lorentzian slice is vacuum Robinson - Trautman class (subsection 7.1). It is the fourth
example of the Lorentzian slice I have found.

e New class of the metrics of the type {[N]® ® [N]", [-—]} was found. Such metrics admit
only neutral slices'® (section 6).

e New class of the metrics of the type {[N]® ® [N]*, [++]} which admits only neutral slices
and which is equipped with the twisting congruence of null geodesics was found (section
8). Within this class vacuum Einstein equations can be reduced to a single equation. It
is Eq. (8.4) in the case with no symmetries and Eq. (8.9) in the case with one symmetry.
The case with two symmetries was considered in [P9].

4.3.6 Summary of the monographic series of publications

The monographic series of publications which I have described in sections 4.3.2-4.3.5 is based
on 8 articles [H1] - [H8] published in 2010-2018. These papers are devoted to the symmetries
and geometry of the congruences of null strings in strong and weak hyperheavenly spaces. The
most important results of the series of publications are:

e Detailed analysis of the Killing vectors, homothetic vectors and proper conformal vectors
in the hyperheavenly spaces ([H1], [H2], [H3], [H4]).

e Classification of the traceless Ricci tensor in 4-dimensional neutral spaces ([H5]).

e Examples of the metrics of para-Hermite and para-Kéahler Einstein spaces. Many of these
metrics are - to the best my knowledge - the most general solutions of such spaces of
certain algebraic types ([H6]).

e The analysis of the relation between geometrical properties of the congruences of null
strings and the properties of the traceless Ricci tensor ([HT]).

e Detailed analysis of the spaces which both SD and ASD parts of the Weyl tensor are of
the type [N] ([HS]).

e Four examples of the Lorentzian slices of the complex spaces. Three of them are Einstein
spaces of the type [N] ([H2], [H8]) and one of them is an Einstein space of the type [II]
([H4]).

5 Description of other scientific achievements

5.1 Other publications

[P1] Chudecki A. i Przanowski M., 2008, A simple example of type-[N] & [N] HH-spaces
admitting twisting null geodesic congruence, Classical and Quantum Gravity 25, 055010

[P2] Chudecki A. i Przanowski M., 2008, From hyperheavenly spaces to Walker and Osserman
spaces: I, Classical and Quantum Gravity 25, 145010

16The metrics which belong to this class and they admit the null Killing vector was considered earlier in [H4].
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[P3] Chudecki A. i Przanowski M., 2008, From hyperheavenly spaces to Walker and Osserman
spaces: II, Classical and Quantum Gravity 25, 235019

[P4] Przanowski M., Formaniski S. i Chudecki A., 2012. Notes on para-Hermite-Einstein space-
times, International Journal of Geometric Methods in Modern Physics, Vol. 9, No. 1,
1250008

[P5] Chudecki A. i Przanowski M., 2013, Killing Symmetries in H spaces with A, Journal of
Mathematical Physics 54, 102503

[P6] Chudecki A. i Dobrski M., 2014, Proper conformal symmetries in self-dual Einstein spaces,
Journal of Mathematical Physics 55, 082502

[P7] Chudecki A., 2016, All complex and real ASD Einstein spaces with A admitting nonnull
Killing vector, International Journal of Geometric Methods in Modern Physics, Vol. 13,
No. 2, 1650011

[P8] Chudecki A., 2017, Congruences of null strings and their relations with Weyl tensor and
traceless Ricci tensor, Acta Physica Polonica B Proceedings Supplement, Vol. 10, No. 2

[P9] Chudecki A. i Przanowski M., 2018, On twisting type [N| ® [N] Ricci flat complex space-
times with two homothetic symmetries, Journal of Mathematical Physics 59, 042504

5.2 Papers [P1], [P9]

The papers [P1] and [P9] are devoted to the spaces for which both SD and ASD parts of
the Weyl tensor are of the type [N]. These spaces are equipped with the congruences of SD and
ASD null strings such that their intersection constitutes the congruence of null geodesic with
twist. In notation proposed in [H8] the symbol for such spaces is {[N]¢ ® [N]®, [++]}. These are
the generic complex spaces for the Lorentzian vacuum type [N] twisting spaces.

In [P1] we used the form of the key function for the expanding hyperheavenly space which
was found in [49]. We inserted this key function into expanding hyperheavenly equation and we
obtained the general equation (3.2) for the spaces of the types [deg] ® [deg]. (Similar approach
was proposed in [13,19]). Then we specified Eq. (3.2) and we obtained the equation for the
type [N] ® [N] (Eq. (3.4)). We focused on the analysis of the special case of this equation.
Finally we found an interesting example (the metric (4.15)). The metric (4.15) is equipped
with the twisting congruence of null geodesics but it does not admit a Lorentzian slice. It
belongs, however, to the class of the Walker spaces. It suggested that the hyperheavenly spaces
formalism can be used in investigations of the Walker spaces ([P2] was devoted to this problem).

To find the twisting solutions of the type [N]® [N] spaces we used the hyperheavenly spaces
formalism once again in [P9]. The first step was to find the key function for the spaces of the
type [N] ® [N] in a different form than the form proposed by J.F. Plebaniski and G.F. Torres del
Castillo in [49]. We found slightly different coordinates than the coordinates used in [13.19]. The
key function in these coordinates has the form (3.12). The expanding hyperheavenly equation
splits into the system of three equations (3.21) for two functions of three variables!”. This
system of equations is very complicated. We arrived at the conclusion that the analysis of the
space of the types [N] ® [N] with twist and without any symmetries is a very difficult task. We
decided then to equip the space with two homothetic symmetries. We proved, that the Killing
vector can be always brought to the form 9,, and the homothetic vector can be brought to the
form wdy, 4 t0 + (1 — 2x0)(d0y + ndy).

The set of Egs. (3.21) splits naturally in two branches. The generic one leads to the
metric (6.6) and the field equations reduce to the extremely complicated, nonlinear ODE of

1"This overdetermined system of equations is now intensively analyzed in the case with no symmetries and in
the case with one homothetic symmetry.
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the fifth order (6.17). Unfortunately, we were not able to reduce this equation or find any
special solution or even reconstruct the Hauser solution. However, we proved that vacuum type
[N]® [N] twisting spaces equipped with two symmetries always have a solution. Such a solution
exists for arbitrary initial conditions, for arbitrary value of the homothetic parameter y, and
for Lorentzian and neutral signatures of the metric. Moreover, our approach is a progress over
the approach proposed in [14]. In [14] the field equations were not reduced to a single equation.

The generic case was very complicated, but the special case we were able to solve completely.
The metric (5.17) constitutes the solution which depends on one function of one variable U (h)
which satisfies Eq. (5.18) with the solution given by the power series (5.16). Eq. (5.18) is
very similar to the equation which appears in the Hauser solution. However, in Eq. (5.18) the
homothetic parameter is arbitrary while in the Hauser solution it takes a special value. De-
tailed analysis proved that the space with the metric (5.17) is equipped with the nonexpanding
congruence of ASD null strings. Consequently, it does not admit a Lorentzian slice. In notation
proposed in [H8] it is the space of the type {[N]¢ & [N]™, [++]}18.

5.3 Paper [P2]

The hyperheavenly spaces formalism in investigations of geometry of the Walker spaces
was used in the paper [P2]. The Walker space is defined as a triple (M, g, D) where M is
n-dimensional smooth manifold, g is the pseudo-Riemannian metric and D is r-dimensional
totally null and parallely propagated distribution [8,27,61]. In [P2] we focused on the case
n=4and r = 2.

First we pointed out the relation between the hyperheavenly spaces and the Walker spaces.
We defined a weak hyperheavenly space (see Definition 4.4, page 13) and we found the metric of
such space (3.4). Then we proved that every weak and real hyperheavenly space is conformally
equivalent to the Walker space. Using the spinorial formalism we found the metrics of the SD
Walker spaces and SD Einstein-Walker spaces. Especially interesting is the case of SD Einstein-
Walker space with A = 0. In this case we obtained the set of equations (4.31) (this set has been
found earlier in [8]) which solution was unknown.

Further we considered the spaces equipped with two parallely propagated distributions. One
of these distributions was SD and the second one was ASD. We defined two-sided Walker space
and we found its general metric (Theorem 5.1). We used the results of the Theorem 5.1 to solve
the set (4.31). This way we obtained the metric of the SD Einstein-Walker space with A = 0
explicitly.

5.4 Paper [P3]

The paper [P3] is the most transparent example of the use of the hyperheavenly spaces
formalism in geometrical problems of the real manifolds. It is devoted to the pointwise and
globally Osserman and Jordan-Osserman spaces. First we proved the relation between such
spaces and the hyperheavenly spaces. The basic theorem [1] says that a space is a pointwise
Osserman space if and only if it is self-dual (or anti-self-dual) Einstein space, i.e., it is space of
the type [any] ® [—] or [-] ® [any].

We focused on algebraically degenerated pointwise Osserman spaces equipped with the ex-
panding congruences of null strings, i.e., the spaces of the types [deg]® ® [~]¢. For such spaces
the cosmological constant is necessarily nonzero'®. The metrics were found explicitly (Theorem
3.1). It was the first time when the metrics of the Osserman spaces which were not the Walker
spaces were found explicitly. The metrics for the globally Osserman, pointwise and globally
Jordan - Osserman spaces were also presented.

®The example given in [P1] is the special case of the metric (5.17) in [P9].
®The case of the hyperheavenly spaces of the types [deg])® ® [—] with A = 0 has been solved in [18].
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5.5 Paper [P4]

The paper [P4] is devoted to the complex para-Hermite Einstein spaces. The ways how to
reduce vacuum Einstein equations with cosmological constant for the para-Hermite spaces are
analyzed in [P4] in details. Para-Hermite spaces are equipped with two different congruences
of SD (or ASD) null strings. Therefore the only possible types of such spaces are the types
[any] ® [D, —] (the orientation was chosen in such a manner that both congruences are ASD). In
all the cases vacuum Einstein equations were reduced to a single equation. In the most general
case (it is the space of the type [any] ® [D]°¢ with A # 0) field equations were reduced to the
equation (5.13). The analysis of Eq. (5.13) became the foundation of the paper [H6]. One of
the most interesting results is the fact that if para-Hermite Einstein space is equipped with one
expanding and one nonexpanding congruence of ASD null strings then ASD part of the Weyl
tensor vanishes. Consequently, the space reduces to the heavenly space of the type [any] ® [—].

5.6 Papers [P5], [P7]

The papers [P5] and [P7] are devoted to the complex ASD spaces with the cosmological
constant equipped with a symmetry defined by the Killing vector. This problem in the real
spaces with the metric of the signature (+ + ++) was considered in [53,59] (in such spaces
only nonnull Killing vectors exist). Two different forms of the Killing vector admitted by the
ASD spaces with the cosmological constant were found in [53]. In [59] it was proved that these
two Killing vectors are, in fact, the same vector. In the real neutral spaces the problem of the
nonnull Killing vectors was considered in [26].

The first step in [P5] consists of the proof that ASD Einstein spaces with the cosmological
constant admit only Killing vectors. Then we reduced Killing equations to the single equation
(3.16). We called this equation the master equation. However, the master equation for the ASD
Einstein spaces is problematic because it contains the first integral of the heavenly equation
with the cosmological constant. This quantity is denoted in [P5] by Y. Y is very complicated
function. Therefore, there was no chance to solve the master equation. Fortunately, it appeared
that the function T can be gauged away by the appropriate choice of the congruence of SD null
strings 2.

The appropriate choice of the congruence of SD null strings appeared to be crucial in the
problem considered. The metric of the heavenly space with the cosmological constant which
admits the null Killing vector was explicitly found - it is the metric (4.22). This metric considered
as a real one with the neutral signature metric is the general metric of the 4-dimensional globally
Osserman space with nonzero curvature scalar admitting null Killing vector?!. The case with
the nonzero Killing vector appeared to be much more complicated. We proved, however, that in
this case the field equations reduce to the Boyer-Finley-Plebariski (BFP) equation (also called
Toda field equation). The same reduction holds true in the real heavenly spaces with the metric
signatures (+ + ++) and (+ + ——).

I returned to the problem of the nonnull Killing vectors in the heavenly spaces with the
cosmological constant in the paper [P7]. The main aim of [P7] was to analyze in details the
transformation which leads from the heavenly spaces in PRF coordinates (the metric (2.30))
to LeBrun coordinates [29] (the metric (2.34)). LeBrun coordinates were used in earlier works
[26,59]. Moreover, I found all real slices of the metric (2.34) and I proved a theorem (Theorem
2.1) a little more general then the theorem presented in [P5].

*°Note, that the similar problem appeared in the heavenly spaces with A = 0 [17]. To solve this problem J.D.
Finley i J.F. Plebariski used the complementary congruence of null strings. However, in the heavenly spaces with
A # 0 such trick does not work.

*'The same metric has been found independently by M. Dunajski and P. Tod in [11].
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5.7 Paper [P6]

Proper conformal symmetries in Einstein spaces are rare in the sense that in the non-
conformally flat Lorentzian spaces they are admitted only by the type [N] pp-wave metric. In
[H1] the complex space of the type {[N]” ® [N]",[-—]} equipped with the proper conformal
vector was considered. Its Lorentzian slice is pp-wave metric. The only heavenly spaces which
admit proper conformal symmetry are spaces of the type [N]" ® [—]. We devoted to such spaces
the paper [P6].

We proved that there are two essentially different classes of the proper conformal symmetries
in the spaces of the type [N]"®[—]|. We analyzed the geometric and algebraic differences between
them. The geometric difference is related to the properties of the congruences of ASD null
strings. The spaces of the type [N]" ® [-] are equipped with infinitely many congruences of ASD
null strings but two of them are distinguished (these are the congruences defined by the equations
(2.18a)-(2.18b)). If both of these congruences are expanding we deal with more complicated
class of the proper conformal symmetries (Class II in [P6]). If one of these congruences is
nonexpanding we deal with the Class I. The algebraic difference is obvious. The Einstein field
equations for the Class I were reduced to a single PDE of the first order which were solved
completely. In this case we arrived at the metric (2.23) with the solution given by (3.2). The
Einstein field equations for the Class II were reduced to a single PDE of the second order (Eg.
(2.26) with constant ag # 0). The general solution of Eq. (2.26) is unknown. However, we
presented an algorithm how to construct the solution using the only nonzero curvature scalar
C@. As a simple example of the metric which admits such a symmetry we proposed the metric
(4.10).

5.8 Paper [P8]

In [P8] the most important results published later in [H7] were presented. However, one of
the results is especially interesting and original (it has been published, for now, only in [P8]).
This is the general metric (3.7) of the space which admits two nonexpanding congruences of SD
null strings and one nonexpanding congruence of ASD null strings. This is the metric of the
space of the type [D]""  [II]". It belongs to the two-sided Walker class as well as to the para-
Kahler class. The case of the type [D]™" ® [II]" Einstein space was also completely solved. The
metric of such space is given by (3.8). There appear four arbitrary functions of two variables
in (3.8)22,

5.9 Summary and future research

In the Theoretical Physics Group (team leader: prof. dr hab. Maciej Przanowski) I have
been working since 2002. I published 17 articles. Three papers ([P1] - [P3]) were published
before I received the Ph. D. degree (year 2009). In the papers published in 2010-2018 I dealt
with the symmetries in the hyperheavenly spaces, geometry of the congruences of null strings,
relation between symmetries and geometry of the congruences of null strings, geometry of the
spaces equipped with two different congruences of null strings and the methods of reduction of
the field equation in Einstein spaces.

My investigations allowed to find an answer for the unsolved problems formulated by the
creators of the hyperheavenly spaces theory (J.F. Plebanski and I. Robinson and their co-
workers: J.D. Finley, C.P. Boyer, S. Hacyan, M. Przanowski and others). In the meantime I
have found and defined a few other issues I am going to deal with in future. The most interesting
problems are listed below.

*2These two metrics are only the examples of more extensive work devoted to the two-sided Walker spaces
and two-sided sesqui-Walker spaces (sesqui-Walker spaces have been defined in [28]). Such spaces are now under
intensive investigations and they are one of my main scientific interests.
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An analysis of Einstein equations for the hyperheavenly spaces of the type {IN]*®[N]®, [++]}
with one homothetic symmetry and without any symmetries (this is the joint work with
prof. dr hab. M. Przanowski).

The explicit solutions of the para-Hermite Einstein spaces of the type [D]¢¢ ® [N]™ (such
spaces exist only if A = 0) and [D]*®® [N]¢, because I was not able to find the examples of
such solutions in [H6]. On the other hand, I believe that the para-Kihler Einstein space
of the type [D]™ ® [N]¢ can be solved in all generality.

The examples of two-sided Walker and two-sided sesqui-Walker Einstein spaces with the
different properties of the congruences of null geodesics (the paper is ready in 70%).

Subclassification of the congruences of null strings. Nowadays we distinguish only expand-
ing and nonexpanding congruences of null strings so such classification is rather not very
detailed. Interesting question arises if the properties of the Sommers vector can be used
as an additional criterion of the classification of the congruences of null strings.

An explicit solution of the space of the type [I]°**® ® [any] (approach proposed in [H7] is
not satisfactory) and the space of the type [I]°®® ® [I]°°*¢ in the neutral and Lorentzian
signatures. In Lorentzian case such a space is equipped with four different shearfree
congruences of null geodesics. From the Goldberg - Sachs theorem it follows that such
space is algebraically general (type [I]) or it is conformally flat. It cannot be the Einstein
space. What are the possible types of traceless Ricci tensor in such space?

The existence of the congruences of null strings and the hyperheavenly spaces formalism

allowed to solve many geometrical issues. Many new problems have been defined. The most
transparent results concern the real neutral spaces. However, it must be emphasize that the
main goal of our investigations is searching for general techniques of obtaining real Lorentzian
slices of the complex spaces. We hope that detailed studies on the geometry of the null strings
and their intersections allow to find new vacuum and algebraically special solutions of Einstein
field equations.
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